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SUMMARY

Nonlinear equations of motion of symmetrically laminated anisotropic
plates are derived accounting for von Karman strains. The effect of trans-
verse shear is included in the formulation and the rotatory inertia effect
is neglected. Using a single-mode Galerkin procedure the nonlinear modal
equation is obtained. The direct equivalent linearization method is em-
ployed for solution of this equation. The response to acoustic excitation
of moderately thick composite panels is studied. Further, the effects of
transverse shear on large deflection vibration of laminates under random
excitation are studied. Mean-square deflections and mean-square inplane
stresses are obtained for some synmetric graphite-epoxy laninates. Using
equilibrium equations, and the continuity requirements, the mean-square
transverse shear stresses are calculated. The results obtained will be
useful in the sonic fatigue design of composite aircraft panels. The analy-
sis is presented in detail for simply supported plates. The analogous equa-

tions for a clanped case are given in the appendix.

INTRODUCTION

Acoustically induced fatigue failures in aircraft structures have been
a design consideration for the past three decades. With the advent of the
jet engine which produced high intensity acoustic pressure fluctuations on
aircraft surfaces, the problem acquired prominence. The number of acoustic
fatigue failures have resulted in unacceptable maintenance and inspection
burdens associated with the operation of aircraft. Therefore, accurate
design methods are needed to determine the acoustic fatiqgue life of struc-
tures. Numerous analytical studies Refs. 1-13 and experimental investiga-

tions Refs. 7, 14-22 on sonic fatigue design of aircraft structures have



been undertaken during the past decade to help in providing the needed in-
formation.

The majority of analytical studies on flat panels to date have been
formulated within the framework of linear or classical plate theory which
assunes small deflections. Current analytical design methods Refs. 7, 9,
12, 13 for sonic fatigue prevention are based essentially on linear struc-
tural theory. Test results on various aircraft panels reported in the
literature, Refs, 7, 13-17, 19-22 however, have shown that high noise levels
produce nonlinear large deflection behavior in such panels. Recently,
analytical efforts Refs. 1-3, 5, 6, 8, 16 have demonstrated that the
prediction of panel random response is greatly improved by including the
large deflection effects in the formulation. In all these efforts, both
analytical and experimental, the thickness of panel is very small as
compared with its Tength (a/h > 100). The effect of acoustic excitation on
moderately thick composite structural panels has not been investigated.
Further, the effects of transverse shear on large deflection vibrations of
Taminates under random excitation have also not been studied.

The classical theory of
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the midplane before deformation remnain straight and normal to the plane
after deformation, under predicts deflections and over predicts natural
frequencies and buckling loads. Such results are due to the neglect of
transverse shear strains in the classical plate theory. The errors in de-
flections, stresses, natural frequencies and buckling loads are even higher
for plates made of advanced composites 1ike graphite-epoxy and boron-epoxy,
whose elastic modulus to shear modulus ratios are very large (e.g., of the
vvvvv o , instead of 2.6 for typical isotropic materials). These
high ratios render classical theories inadequate for the analysis of compos-
ite plates. Many plate theories exist that account for transverse shear
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strains Refs. 23-34. Recently, the dynamic von Karman plate theory has been
extended to include the shear and rotatory inertia effects by Sathyamoorthy '
and Chia for nonlinear free vibrations of anisotropic rectangular (Ref. 35)
and Skew (Ref. 36) plates. Sivakumaran and Chia have extended this approach
to generally laminated anisotropic thick plates, Ref.37.

In this report, the equations of motion are derived from plate theory
which takes Von Karman large deflection strain-displacement relations into
account. The transverse shear deformation effects are included and the
rotatory inertia effects are neglected. The system of equations is then
simplified to two coupled nonlinear differential equations in terms of
transverse displacement and a stress function. Due to the complex nature of
the problem, the study is restricted to a single-mode response. A deflec-
tion function that represents the first mode is assumed; and corresponding
to the assumed mode, a stress function satisfying the different inplane edge
boundary conditions is obtained by solving the compatibility equation. The
Galerkin method is applied to the governing equation of motion in the trans-
verse direction using the assumed displacement function as the weighting
function. This yields a nonlinear, nonhomogeneous, second-order differen-
tial equation of the response in time. Slope functions that include the
transverse shear deformation effects are assumed and the coefficients are
evaluated by Galerkins approximation. Finally, the random responses from
cases based on four formulations at various acoustic loadings are evaluated
for simply supported rectangular symmetrical laminates. The four cases of
formulations are: 1) linear, small deflection plate theory without trans-
verse shear deformation, 2) linear theory with shear, 3) large deflection
without shear and 4) large deflection with shear. The excitation is assumed
to be stationary, ergodic and Gaussian with zero mean; its magnitude and
phase are uniform over the plate surface.
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The equivalent linearization method is employed. Root-mean-square (RMS)
deflections, RMS inplane stresses and frequencies are calculated. Using
three-dimensional equilibriun equations and the continuity requirements, the

RMS transverse shear stresses in the laminate are estimated.

EQUATIONS OF MOTION
Consider an initially flat, rectangular, elastic plate of constant
tnickness h in the z-direction, length a in the x-direction and width b

in the y-direction, see Fig. 1. The reference plane 2z=0 1is located at the
undeformed middle plane.
The displacement components that include the effects of transverse

shear deformation are assumed in the form (Ref. 38):

U(X,Y,Z,t) = u(x,y,t) + z a(x,y,t)

V(x,y,z,t) = v(x,y,t) + z B(x,y,t) (1)

W(x,y,z,t) = w(x,y,t)

in which U, V and W are the inplane and transverse displacements in X,y
and z directions, respectively, u, v and w are the values of U, V, W
at the midsurface of the reference plane, and a,8 are slope functions in
the xz and yz planes due to bending only. These are averaged components
of direction change of the normal to the undeformed middle surface. The

total strains for the laminated plate can be expressed as




xy = Exy + Z(a,y + s,x)
(2)

e =0

z
€ = a + W,

Xz X

=B +
e_yz B w,.y
where exy’ €z and eyz are the engineering shear strains.

The von Karman large deflection strain-displacement relations are given

by
o _ 1 2
Ex - U,x + E W,x
0 _ 1 2
e)’ = Vay + E‘ wsx (3)
° =\u + v +
Exy- ’,Y *x w’X way

As in the classical plate theory, stress resultants and stress couples are

defined as



(s Ny [ R
(Mo My M) = J 175 (0 0y 0y, 202 (4)
(Qys Q) = [p15 (5,0 0,,)d2
with Oyz -Eﬁu ELsW €y2
Tz ] [_6;5 6;5_ €z (5)

where -a's are the transformed reduced stiffness. Thus for symmetrical

laninates
[N] [A] 0] [e°]
= (6)
[M] 0 [0]] [x]
I{ Qy } ) !-Auu Aur\- !{B + N,y‘l
i Qy [Aus Ass i“ + W,y i (7)
where

"]
X
1 G yj [M] = Myi
N M
Xy



o
X

L0y _ 0 =

[e ] = €y [K] = B’y (8)
(o]

+ B’X

and elements of laminate stiffnesses Aij and Dij are defined as

(Aygs Dyg) = Joprs (1,22) Ty dz (4,3=1,2,6)

ij ij

and (9)

-t h2 <

Partial inversion of equation (6) and inverted form of equation (7) can be

written as
[e°] (A7 o [N]
= (10)
[M] 0 [D] [x]
and
S A Ay Q,
) * * (11)
a + W, Ays Ass Q




where
* =1
[A] = [A]
The plate equations are obtained by considering the equilibrium of an
element of the kth layer of the laminate. Integrating the equilibrium
relations over the plate thickness h, neglecting inplane inertia terms and

retaining the nonlinear terms in accordance with the Von Karman assumptions,

leads to the following equations of motion

+
XX XY,y
N
XY,X Yy

M
X, X XY,y X

p(t) = o h w (16)

+
p=)
+
o
+

Expanding equation (11) and introducing a tracing constant Ts’ we can

write

@ * Wy = Tg (Ass* Q, + Aus* Q) (17)




B+ = T (A Q4 A¥ Q) (18)

in which TS takes the value of either 1 or Q. If transverse shear
deformation effects are neglected T, = 0 and equations (17) and (18)

reduce to
a=-w, and B=-w, (19)

y

Using equations (14) and (15) and making use of constitutive relations given

in equations (10), equations (17) and (18) can be shown to be

a + w’x = bla!xx + bza’xy + baa'Syy + b'-OB’xx + b589xy + bGB’yy (20)
where the coefficients bi are defined as
by = Tg (Ass* D11 + Aws* Di¢)

b2 (2 Ass* Dig + Aus* (D12 + Des))

n
—
v

bs = T (Ass* Dee + Aus* Dze)

by = T¢ (Ass* D1s + Aus* Do)

s (Ass* (D12 + Dgg) + 2 Ays* Dze)




bg = Ts (Ass* Dyg + Ays* D,),)
b7 = Tg (Aus* D11 + Ayu* Dig)
bg = Tg (2Ms* Dig + Auu* (D12 + Dge)) (22)

bg = Tg (Ays* Dee + Ayu* D26)
bio = Tg (Aus* D1 + Ayy* Des)

byy = Tg (Ays* (Dyp + Dgg) * 2 Ayu* D2g)

biz = Tg (Ays* D2g + Ayy* D22)

Equations (20) and (21) can be written as

"
o

W, + da) + K(B) (23)

n
o

Wy + L(a) + M(E) (24)

where J,K,L and M are the operators defined as

2 2 2
J=1-b 2 b, 2 _p, 22
ax2 axdy ay?
32 2 4 32
K=-by — -bg - g
ax2 axdy ay?
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Solving equations (23) and (24) we get

N(a) (25)

M(w’X) = K(w9y)

3usy) = Llws,) = N(8) (26)

KL - MJ can be shown to be

where the operator N

y b 4 4 Y
axt ax3ay ax23y? axay’ ay*
32 32 32
ke — + ky + kg -1 (27)
ax2 Ixdy ay?

with coefficients k. defined as

ki

by b7 - b1 bio

k2 = by bg + bs bz - by b1 - b2 bio

ks = by bg + bs bg + bg b7 - by byj2 - bz b1y - b3s bio
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k, = bg by + bg Dg _ b3 by - b2 bio (28)

ks = bg bg - b3 bi2
ke = b1 + bio
k7 = bz + b1}
kg = b3 + b1z

Using equations (14) and (15) and the relationships given in equations (6)

and (8) we can get

where

t { . \' N N ‘ - . PR, Y oY
L}\_u,s.) = Dyy a,gyx ¥ 3 D16 a,yyy T (D12 T 206 %,y
EATAN ; Y Y 4

)

+ Doe a,yyy + Di1s B’XXX + (012 + 2D66) fl’XX_Y

B
The Airy's stress function F is defined such that
T -
N = [F, F.. - F, ] (31)
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using equation (31) and the relationships given in equations (6) and (8), we
can get

Nx Wi * N w, + 2N = ¢(F,w) (32)

W,
y yy Xy "Xy

Substituting equations (29) and (32), equation of transverse motion as given

in equation (16) can be rearranged to be

I, +I,+13=0 (33)
where

I, = p(t) - ohw

I, = ¢(F,w) (34)

I3 =1L {(a,B)

By making use of the operators defined in equations (25) and (26), « and B8

can be eliminated from equation (33) and can be written as

N(I; + Ip) +U; (w) =0 (35)

where N is the operator as defined in equation (27) and

13



Dy e v 2Dy, + 2e) 2
U, = s + 2(Dy, +
1 11 — e 2 66 sxPay?
4 4 6 6
Wy > _+0, 24P, 2 _4p, 27
axays oyt axs axdys
36 36 6 36
+ Py *P —— + P 2 + P
3x+ay2 ax3ay3 axZay+ axays
p, 20
+ — 36
7 W (36)
where Pi are defined as
Py = by Dig - byo D1,
P, = (by - byy) D1y + (bg - by - 3byg) D1g + b7(Dy2 + 2Dg6)
P; = (bs - by;) D)y + (bg - by + 3b, - 3by;) D16
+ (bg - by - byjo) (D12 + 2Des) + 3b7 D26
Py = bg Dj3 * (3bs - 3by, - b3) Dy
(37)
+ (by - by * bg - bp) (D12 + 2Dg6)
+ (3bg - 3by - byg) D26 + by D22
Ps = 3 bg D1g + (bs - b1z - bz) (D12 + 2 Dgeg)
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+

Lo

(=
£

- byy + 3bg - 3by) Dy + (bg - by) Dy

Pe = bg (D12 + 2D66) + (bs - by2 - 3bg) Dag + (bg - b2) D22

P = bg Dag - b3z D22

Thus the equation of motion in the transverse direction as shown in
Eq. (35) can be expressed in terms of out-of-plane deflection w, the

stress function F and the operators N and U;. Note that with tracing

constant Ts = 0, the bi’ K.

i and Pi are zero, then the operators N

and U, reduce to

N=-1 (27a)
Uy = Dy e % 4Dy —2 + 2(Dy, + 2gg) o (36a)
= Dy —— + + + + 36a
1 11 3 x* 16 8x33y 12 66 axzayz
4 Y
,s —— — +D,, ——
Ixays ay*

The compatiblity equation is derived from equation (3) and can be written

as

0 0 0 2 -
Ex,yy ¥ Ey.xx T Exy,xy T Wolxy t Waxx Wayy = 0 (38)
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Making use of equations (10) and (31), one can write Eq. (38) as

Roo* stxxx - 2A26*stxxy + (2A12* + AGG*)F,xxyy - ZAIG*styyy +

* = w.2 -
AT Fayyyy = oxy T Waxx Woyy (39)

Equations (35) and (39) are the governing equations which will be solved by

employing Galerkin's approach and equivalent Tinearization method.

DEVELOPMENT OF SOLUTIONS

Modal Equation

Consider a simply supportedt, rectangular, synmetric composite plate of
dimensions a x b x h with the origin located at the center of the plate.

The out-of-plane boundary conditionst are

x=%* a/2 : w-= M, =8=0 (40)
=%+ b/2 =M =a=0
y / W y =@
For the inplane condition of zero shear stresses at the edges, the
deflection function is assumed as
w(x,y,t) = q(t)h cos Xoos ¥ (41)
a b

The slope functions o and B are assumed as

tTne analogous equations for clamped case are shown in appendix.
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a(x,y,t) = B; q(t) sin - cos - (42)
B(X,y,t) = B, q(t) cos IX sin I%. (43)
a

where the constants B; and B, will be evaluated later. Substituting
equation (41) in equation (39) and solving it, the stress funciton F is
obtained as

FeF +F) (44)

in which the particular solution is given as (Ref. 6)

212 p2
Fo=.9hr (Fro cos 2™ + £y, cos 27 (45)
P 32 a b
where
Flo = —— Fyy = —1_ r= a/b (46)
A* oo App*r®

The complementary solution F_. will now be obtained such that it satisfies

o
inplane boundary conditions. For movable edges, the inplane boundary

conditions are

x=tw2 o F =226, dy=0 (47)

'Yy
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. (32 -
y = tb/2 F,yy = f—a/z F,xx dx = 0
By using the above conditions, it can be shown that Fc is zero for movable
inplane edges. For immovable edges, the inplane boundary conditions of zero

shear stresses and zero normal displacement at the four edges are

x =%af2 : F =[f (e0 1 W 2) dxdy = 0

- . QXy A X E 9x y

(48)
y=4%b/2 : F = [ (eo - 1—.w2 ) dxdy = 0
,xy . R y 2 ,y
The complementary solution is assumed as

- .2 - -

Foan X Yoo xy (49)

Upon using Eqs. (10) and (41) and enforcing the conditions of Eq. (48), Nx,

N, and ny in Eq. (49) are obtained as

y
N, = 0 oz _/51_2>
8(A11*Az2* . A)p*?) a2 b
- 21242 *
N, = T ; (5_1_1_—_’*_1_* (50)
8(A11*A22* _ Alz*z) b2 a2
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The particular solution Fp has been obtained and given in equation (45).
The total stress function, therefore, is F = Fp + FC for immovable inplane
edge conditions. With the assumed deflection w given by equation (41) and
the stress function F given by Eq. (44), Eq. (35) is then satisfied by
applying a modified Galerkin's method:

JTIN(Ih +12) + Ul(w)]wdxdy

+ f?432 M)y = a2 (D= a2 W

b/2
¥ f—b/z M) x=a2 (3) xear2 9

a/2

+ [ (M)

Clay2 Y y=-b/2 (6) y=-b/2 dx (51)

a/2

+ _r_a/z (M) sz (B) yapyp X = 0

which yields a modal equation of the form

qrwlq+arg= p(t) (52)
m

19



with

(53)
b 6 T 4 ™ 2 m 2 w 4 2 6
-P (=) P (=) (D) -Ps (=) (=) -P (]
a a b a b b
A = A AL (54)
n*h
Ay T (Fio + Fo1) (55)
16pb*
2 4
\ mh Aga* - 2R12* ré + Ajy* r
¢ 8oa" \  Apy* Ayt - Ap,*2 (56)
and m is the modal mass, it is given by
_ ph2y2 m, 4 n, 2 ., 2 m,oY n, 2
m = [1-k (9 -k (0 (D -ks (&) *ke (5
16 a a b b a
ne 2
+ kg () ) (57)
b
Note that with TS = 0, ki and P, are zero and Eqs. (53) and (57)
reduce to

20




"R o Yo (D12 + 2 Dgg) (™ 2y o™y (58)
i (;) 12 66 (;) (E') 22(‘5) ]
m = ph2n2 (59)
16

where mo is linear radian frequency, Ap is nonlinearity coefficient, Ac
is an addition to the nonlinearity coefficient due to immovable inplane edge
conditions and m is the modal mass. For movable inplane edge conditions
AC = 0. For linear small deflection theory, A = 0. Equation (52) repre-
sents a single-mode, undamped, large amplitude modal equation with trans-

verse shear effects taken into account (TS=1). This nonlinear modal equa-

tion will be solved by employing the method of equivalent linearization.

Random Response

It is known that damping has significant effects on the response of
structures. Therefore, the precise determination of the damping coefficient
of a structure should be emphasized. The values of damping ratio
r (=c /c.,) generally range from 0.005 to 0.05 for the common type of
composite panel used in aircraft construction (Refs. 12, 20, 22). Once the
damping ratio is determined from experiment or from existing data, Eq. (52)
can be expressed in a general form as

.. o 2 3 t
G+ 20 q*aq+aq = plt) (60)

m
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The method of equivalent linearization is used to obtain an approximate
mean-square amplitude of Eq. (60).
The basic idea of the equivalent linearization method (Refs. 39, 40) is

that the approximate response can be obtained from the linearized equation

p(t)

o o 2
q+2w q+Qq-=
° m

(61)

where 2 s an equivalent linear or nonlinear frequency. The error of

linearization, a random process, is
§ = (w% - 02)q + aq3 (62)

which is simply the difference between Eq. (60) and Eq. (61). The method of
attack is to minimize this error in a suitable way. The classical choice is

2
to minimize the mean-square error E[6 ], that is

2 E[s°] = 0 (63)
3(e )

If the acoustic pressure excitation p(t) is stationary Gaussian, is
ergodic, and has a zero mean, then the approximate displacement q computed
from the linearized Eq. (61), is also Gaussian and approaches stationarity;
this result is due to the fact that the panel motion is stable. Substitut-
ing Eq. (62) into Eq. (63) and interchanging the order of differentiation

and expectation yields

22




(o, - 92) €[] + 2 E[¢] = 0 (64)

which leads to the relatonship between the equivalent linear frequency and

the mean-square displacement as

2 2 2
2 =w + 3 Efq ] (65)

2
where E[q ] is the mean-square maximum deflection of the laminated compos-
ite plate.

The mean-square response of the modal amplitude from Eg. (61) is

2 o 2
€la] =7 S()lHw)| do (66)

where S(w) 1is the pressure spectral density (PSD) function of the

excitation p(t). The frequency response function H(w) is given by

H{w) = > (67)

For 1ightly damped (z < .05) structures, the frequency response curve will
be highly peaked at the equivalent linear frequency o (not at w, as in
the small deflection linear theory). Integration of Eq. (66) can be greatly
simplified when the spectral density of the excitation is slowly varying in
the neighborhood of ©, and S{9) can be treated as constant in the fre-
quency band surrounding this nonlinear resonance peak Q; then Eq. (66)

yields
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ffq2] = _"3(@) (68)
2 2
4m ;woﬂ

To convert the PSD function from (Pa)?/radian to (Pa)?/Hz, substitute

Q = 2nf
s(a) = SF) (69)
2n
into Eq. (68); then the mean-square deflection becomes
2
Efq 1= 3f) (70)

2 2
The PSD function S(f) has the units (Pa) /Hz or (psi) /Hz.

Slope Functions

In deriving the governing equations of motion, the slope functions a
and B were eliminated as such, and for the determination of linear and
nonlinear frequencies and the mean-square displacement, the slope functions
need not be known. But for the determination of strains and stresses, slope
functions a and B are to be known. The boundary conditions for a simply
supported plate are given by Eq. (40). The slope functions given in Egs.
(42) and (43) satisfy the boundary conditions. The constants B; and B,
are determined by applying Galerkin method. Using Eqs. (25), (26), and (41)
and with slope functions a« and B8 as the weighting functions, one can

get:

24




°2 p3I2 [na) < M (w,) +K (w,)] @ dxdy = O (71)
-b/2 -a/2 y

272 (212 [N(g) - 3(w,y) + L(wny)] 8 dxdy = O (72)
-b/2 -a/2

From integrating Eqs. (71) and (72), one can find that the constants B,

and B, of the slope functions are found to be

n%- [1+ by, (gﬁz - (bs-byp) ( EJZ]
B, = (73)
' L ™ e ™2 M2 (M e (M2 (")2
-k (;ﬁ -k3 (;? (EJ - ks FE) 6 0;) 8 (<
B (- (o) ()
B, = " 2 (74)

Lok (M ke (MM - ke (M + ke (M + & (")2
- ky (;J - ks (;) (EJ - ks (BJ 6 C;) s (&

Note that the constants By and B2 depend on plate dimensions and the

coefficients bi and ki‘ With no transverse shear effects, TS =0, the

coefficients bi and ki vanish and the slope functions reduce to

@ = W, = (EEJ g sin ™ cos WA (75)
a a b
B = -w, = (EEJ g cos X sin Y (76)
y b a b
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It is obvious that the expressions for B, and B, given in Egs. (73) and
(74) are consistent with no transverse shear condition given in Egs. (75)

and (76).

Stress and Strain Response

The strains at any point of the laminate are given by equation (2) and

by using the constitutive relationships given in Eq. (10). One can write

Eq. (2) as
€ F, a,
X yy X
= *
Ey [ Ax] F’xx +z B’y (77)
exy _F’xy a, + B,

where 2z 1is thickness coordinate. Once the strains are known the stresses

in kth Jlayer can be determined from

c’X EX
. EECEE
\ y [q] y (78)
Txy sxy

where Qij are the transformed reduced stiffnesses for kth layer.
Substituting for stress function F as given in Eg. (44) and slope
functions « and B as given in Egs. (42) and (43), a general expression

for strains at any point in the structure.is given as
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r r
e ) c W C w
X 1X 2X
€ L = C L + L 2
y W 1Y a ﬁ Cz.Y 9 (79)
€ C C
nyJ L 1XY L 2%
where
C % = z S1 cos H cos Iy
1 a b
C =z S, cos ™ cos ™Y (80
1y a b )
C = Z S; sin ™ sin my
11Xy a b
with
S, = 2.8 , S,=28B, , S3=-(Llp +21
N 2 : 2 3 " 1 " B2 (81)
and
C,x = A1y + Miz*ny + he*hy,
C,y = M2y + Ae2*ny + Ae*yy (82)
Coxy = Ae*ny + Aze*ny + Re6*Nyy
with
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2 * A, *
2.2
— (hr" ) F cos 2WY 4 Nin (sz -2 ) (83)
X 8 \b 01 b 8(A11*Rpp*-Ay2*2) \ a2 b2

1 [ hreV 2nx . h2y2 Aui*  Arg*
ny = - | — Fio cOS + .

8 a a 8(A11*A22*-A12*2) b2 a2

nxy =0

The mean-square strain is then related to mean-square modal amplitude in a

general expression as

Ele?] = ¢} E[?] + 3 c8 (E[?])2 (84)

where E[qg2] is mean-square displacement of Eq. (70). By making use of Eq.
(78), an expression similar to Eq. (79) can be obtained for stress at any

point in the structure, as given by

%% Elx E2x
= 2
Txy Elxy E2xy
where
Eix C1x
o (k
Eqy - [q)tK) Cyy (86)
l Elxyl Clxy
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and

E2x C2x
_ (k)
1 Ezy = [Q] Czy (87)
lE2xy lc2xy

It is obvious that a similar expression to Eq. (84) can be employed for

computing mean-square stresses.

Transverse Shear Stresses

The transverse shear stresses can be obtained either by using the con-
stitutive equations {(Eqs. (2) and (5)) or by integrating equilibrium equa-
tions (of three-dimensional elasticity in the absence of body forces) with
respect to the thickness coordinate. Reddy (Ref. 33) felt that the second
approach not only gives single-valued shear stresses at the interfaces but
yields excellent results for all theories in comparison with the three-
dimensional solutions. In view of its accuracy, inspite of the fact that
the use of stress equilibrium equations in the analysis of laminated plates
is quite cumbersome, the integration of equilibrium equations is used for
the determination of shear stresses t_ _ and <t . Thus, integrating the

Xz yz
equilibrium equations with respect to the thickness coordinate 2z yields

Zz
T, * --L/Z (o, x * Txy,y) 92+ F(x9) (88)
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r4
v, = -1

yz = 7L, Uyt oyy) 42 sto) (89)

Using Eq. (77) and the inplane stress-strain relationships given in Eq.

(78), Eqs. (88) and (89) can be written as

2 an

- - - " x -~ -
T, _{‘/2 (-{1(Q1 Ap* + Qqp Ajp* + Qi Ajg™) - + Qg App* + Qpp Ay

— an — — - an
X
+ Qi Aog*) 5_x!- + (Q1 Ate* + Q12 Age* + Qug Ase*) ——a—xl] q2 + Z% [

- (Q“ S; + Q2 52) sin % cos “—: + Q16 S3 cos -1-'% sin "_'y] q}-

b

—- —- - an - -
X
f[(Qg Apr* * Qg App* + Qg Are™) 3y * (Qg Arp* + Qg Az*

n an

= - - - X
+ Qs P26 ™) 'a—y{ + (QueMe* + Qoo Aze* + Gee Acc*) -.ﬁy.] q

+Z%[ - (Qie S1 + Qee S2) Cosﬁsin“_g’_+055 Sg sin ™
a a

cos %] ql) dz + f(x,y) (90)
b4 - - - 3nx -
T2 =_{]/2 (-{{(Qe Apr* + Qo6 Ar2* + Qgg Ar6*) Ve * (Qy A"
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an on
+ 026 Azp* + Qse Azs*) Y+ (016 Arg* + st A*g6+ Qes Age*) ——lLJ

+2 0 [-(Qe S1 + Qe S2) sin eos s QeeS3 cOS ™ sin 1] ql
a

a b a b

- - — an -
X
- {[(Q12 Apr* + Q22 App* + Q6 Are™) 5;—-+ (Qiz Ap* +

371
Q2 Aoo* + Q6 Poe* ) — 5 Y+ (le Ae* + Qpp A%y + Qg Age* )

an

X
ayy]qz + 2 —-f- (01251 + 02252) cos S‘“—% + 02653
sin ™ cos Y]q}) dz + g(x,y) (91)
a b
where Qij = Qiék) but for brevity the superscript k is omitted in Eqgs.
(90) and (91) and hereafter. Expressions for Nys My and gy dare given

in Eq. (83) and Si are defined in Eq. (81). Equations (90) and (91) are
integrated with respect to the thickness coordinates 2z and rearranged to
give

Txz = Dxz 9% 0D,xz @+ fx,y) (92)

ty; = D1y, 9+ D2y, @+ g(x,y) (93)
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where the functions f(x,y) and g(x,y) have to be determined from

continuity considerations and

o
il

0.522 [(F,-F,) sin X cos 1Y + (F3-F,) cos X sin Il]

1XZ a b a b

Dxz = - 2l Ri Qi1 +R2 Q12 + (R3 + Ru) Que + Rs Q26 + Re Qs6)

()
1]

. MY L L . n
Lyz 0.522[(F5-Fg) sin - cos ?V- + (F,-Fg) cos —Xa- sin —BV-]

Dyz= - 2[R Qs + (R2 + Re) Q26 + R3 Qo6 + Ry Quz *+ Rs Q22!
with
- -
Fi = ;(Qu S1 + Quz2 S2)
Fp = %(Qes S3)

.- -
Fi =B'(Q16 S1 + Qe S2)

Fy = -E{le S3)
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Fs ='§{le S1 + Q26 S2)
-

Fe =E(Q26 53)

Fs = E{le S1 + Q22 S2)

Fg = —
8 " (Qee S3)

e
N
]
T——
>
*
et

(99)

- g |2 (100

Equations (92) and (93) provide general expressions for the transverse shear
stresses at any location (x,y,z). Since the excitation is random and the

interest is in determining the mean-square T, and Ty Before the mean-
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square stresses are calculated, the functions f(x,y) and g(x,y) are to
be evaluated.

The following scheme explains the procedure for evaluating the func-
tions f(x,y) and g(x,y) for a four layered symmetrical laminate with the
stacking sequence of (0/90/90/0), see Fig. 2. Because of the synmmetry
only two layers are considered. Numbers 1, 2, 3 refer to the thickness
coordinate z. Superscripts I, Il refer to layer nunbers as well as lamina
material properties. Considering layer I and the point z (1), one can get

from Eq. (92)

I 1 I,
Tz(1)  D1xz(1)9 ¥ Daxz(1) @+ F (%9) (101)

Now imposing the condition that rxz=0 on top and bottom of the laminate

results in

flix,y)= -0, ! -0, ! 2 (102)

o 1xz(1) 97 Yaxz(1) 9
By considering the point 2 of layer I {(which is an interface point for layer
I and layer II), from Eq. (92) one gets
I 1 I A

Txz(2) = Dixz(2) 9 Daxz(z) ¥ F (%) (103)

The substitution of Eq. (102) in Eg. (103) results in
I _ I I I Iy
xz(2) = Oz(2) " Pixa(1)) 9% Coaxz(2) = Oaxz(1)) (104)

The condition that Tz = 0 at point 1 can be expressed as
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xz(1) = G1xz(1) q+ G2xz(l) 92

With Giyz(1) = Baxz(2) = 0.

Now Eq. (104) can be written as

= 2
xz(2) Gl1xz(2) q+ G2xz(2) q
where

- I 1
G1xz(2) - D1xz(2) - D1xz(1)

I I

G2xz(2) D2xz(2) - D2xz(1)

Now considering the same point 2, but in layer II one can write

1,1 no o I
Txz(2) D1xz(2) q+ D2xz(2)  + f(},y)

since continuity consideration requires this

no 1
Txz(2) = Txz(2)

using Egs. (106), (109) and (110), one can show that

II I

) I
f(x,y) = (Glxz(g) - Dlxz(2)) 4+ (Gyyzp(2) - Dsz(z)) ¥
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Next considering point 3 in layer II, one gets

I 11 11 , I
xz(3) ~ D1xz(3) q+ D2x2(3) qQ° + f}X,y) (112)

substituting for fII(x,y), Eq. (112) becomes

11 Il 11
%2(3) © (Pixz(3) " Dixz(2) * Cixz(2)) ¢ (113)

II II
*(02(3) " Paxz2) * Coxaty))

Equation (113) can be rewritten as

Il
xz(3) © G1xz(3) q+ G2xz(3) ¢ (114)

Once the constants Gyxz, Gyxz are evaluated at points 1, 2, 3 etc., along
thickness, the mean-square Ty, Can be evaluated using an expression

similar to Eq. (84). In similar manner the functions g(x,y) is evaluated

and the constants GlyZ’ Gzyz are determined for calculating mean-square

1

yz-
NUMERICAL RESULTS AND DISCUSSION
Numerical results for a symmetric cross-ply plate are presented first.
A four-ply square laminate (12x12 in.) with layers of equal thickness and
subjected to a uniform random pressure is considered. The plate is simply

supported on all four edges. For the examples presented, a representative

high-modulus graphite-epoxy with the following material properties is used.
E;/E2 = 40
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0.5

Ga3/Ey

GIZ/EZ = Gls/Ez = 0.6

Vi = 0.25
Es = 0.75x10° psi
P = 2.4x10-% 1b-sec?/in.%

Table 1 shows the nondimensional fundamental frequency Eb
(wg a2/h) \[;7E; as a function of plate length to thickness ratio (a/h).
The linear small deflection plate theory with and without transverse shear
deformation is used. The Navier series solutions obtained by Reddy and Phan
(Ref. 41) are also given in Table 1 for comparison. It clearly indicates
that the present method gives good frequency predictions.

Table 2 shows the RMS nondimensional maximum deflection wﬁax’ and RMS
nondimensional maximum stress in the major material direction T;, versus
plate length to thickness ratio for the same cross-ply laminate at 130 dB
(Ref. 2x10-5 N/m?) sound spectrum level (SSL). Stress oy is measured at
(0,0,h/2). Table 3 shows the nondimensional equivalent linear frequency
T = (naZ/h) p/E, versus plate length to thickness ratio. Examination of

Tables 2 and 3 reveals that for moderately thick plates (a/h<20) the small

deflection theory with shear deformation (A = 0 and TS = 1) and for thin
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plates (a/h>50) the large deflection theory without shear deformation (A # 0
and TS = 0) would give accurate predictions as indicated by agreement with
the theory including both nonlinear and shear effects (A # 0 and TS = 1) on
maximum deflections, inplane stresses and equivalent linear or nonlinear
frequencies. This is clearly evident from Figs. 3 to 5, where the values
given in Tables 2 and 3 for RMS .Whax’ RMS stresses and frequency T are
shown plotted against a/h.

The RMS nondimensional transverse shear stresses G, and &g are de-
termined by integrating three dimensional equilibrium equations as explained
earlier. G, 1s measured at (0,b/2,0) and G5 is measured at (a/2,0,0).
Table 4 shows o, and og values calculated for different a/h ratios at
130 dB SSL. Figure 6 shows the transverse shear stresses o, and og across
the plate thickness for the laminate under consideration with a/h = 10 and
at 130 dB sound spectrum level. It is evident from Fig. 6, that for thick
laminates, the plate theory without transverse shear over predicts the RMS
transverse shear stresses compared to plate with shear deformation.

Figures 7, 8 and 9 show the RMS (maximum deflection/h), RMS maximum
normal stress o; and equivalent linear frequency g, respectively
the simply supported four-layer cross-ply square plate with a/h = 200 at
sound spectrum level varying from 90 to 130 dB (ref. 2x10-5 N/m2). Results
shown are using the four formulations discussed earlier and there is no
appreciable difference between the results using theories with and without
transverse shear. The linear and nonlinear solutions agree at low values of
SSL, but disagree at high values. For acoustic excitations of sound
spectrum levels less than 90 dB, the small deflection assumption will give
good predictions for the composite panels studied as the iinear and

nonlinear solutions coalesce. At 130 dB SSL, however, the small deflection
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theory predicts that the plate would deflect to a value of 6.6 times of
plate thickness; whereas, the large deflection theory (with or without
shear) gives the much smaller value of 1.6h. This smaller value seems more
reasonable, intuitively. Similarly, for the RMS stresses and equivalent
linear frequency, at high SSL values (for thin laminates) the small
deflection theory over predicts the RMS deflection and stresses, and under
predicts the frequency as compared with large deflection plate theory.
Finally, the nondimensionalized fundamental frequencies ‘66 for a
symmetrical angle-ply (6=%45) square plate (12x12in.) for different a/h
ratios and nunber of layers are shown in Table 5. The material is graphite-
epoxy and the material properties are those that were given in Ref. 42. The
nondimensionalized frequencies compare very well with the values given in

Ref. 42,

SUMMARY AND CONCLUSIONS

The main objective of this study is to predict mean-square inplane
stresses and transverse shear stresses that develop in symmetrical composite
laminates when they are subjected to acoustic excitation. For moderately
thick laminates, the transverse shear effects are considerable. In this
report, equations of motion are developed which include geometric large
anplitude nonlinear effects (von Karman theory). The transverse shear de-
formation effects are included. By various operations, the slope functions
are eliminated from the equations of motion, which are expressed in terms of
stress function F and displacement function w. These equations can be

considered as an extension of von Karman's nonlinear equations of plates.
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In view of the complexity of the equations, a single-mode Galerkin
procedure is employed to obtain a nonlinear modal amplitude equation for the
forced vibration of plate. The excitation is assummed to be stationary,
ergodic and Gaussian with zero-mean. The equivalent linearization method is
employed. The fundamental frequencies that are obtained for both cross-ply
and angle-ply laminates found to be in good agreement with those that are
available in the literature. Root-mean-square deflections and RMS inplane
stresses are calculated. Using the three-dimensional equilibrium equations
and continuity considerations, the RMS transverse shearing stresses in the
laminate are determined.

The effects of transverse shear are considerable if the plate lTengths
are less than 20 times the thickness (a/h<20). These effects should not be
ignored in moderately thick and thick plates and small-deflection theory
with shear deformation would give accurate predictions of maximum
deflection, frequency and inplane stresses. For thin plates (a/h>50), the
Tinear and nonlinear solutions agree at low values of SSL, but disagree at
high values. The small deflection theory over predicts the RMS deflection
and stresses, and under predicts the frequency as compared with large
deflection plate theory. The large deflection theory with transverse shear
effects neglected would give accurate predictions for thin panels at high
SSL values. For a particular value of a/h, therefore, one of the three
simpler theories can be chosen that provides accuracy equal to the more
cumbersome theory that includes poth shear and large deflection effects.

The prediction of transverse shearing stresses is required for
understanding sonic fatigues of composite laminates, especially the unique

inter-laminar failures.
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Table 1. Nondimensional Fundamental Frequency (wgya2/h) [o/E, of a Simply
Supported Four-Layer Cross-Ply Square Plate.

a No Shear Shear
h

Navier*!  Present Navier*!1 Present
Solution  Result Solution Result
5 18.215 18.891 10.820 11.554
10 18.652 18.891 15.083 15.662
20 18.767 18.891 17.583 17.872
50 18.799 18.891 18.590 18.715
100 18.804 18.891 18.751 18.846
200 - 18.891 - 18.880
400 - 18.891 - 18.888
1000 - 18.891 - 18.890
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Table 2. Nondimensional RMS Maximum Deflection 10(RMS w)E h3/(a“\’(PSD)f°)

and RMS Maximun Stress (RMS o1) h2/(10a2 §y(PSD) f,) of a Simply
Supported Four-Layer Cross-Ply Square Plate at 130 dB Sound
Spectrum Level.

.% Small Deflection Large Deflection
No Shear Shear No Shear Shear
RMS Maximum Deflection
5 0.4026 0.2471 0.4026 0.2471
10 0.4026 0.3478 0.4026 0.3478
20 0.4026 0.3873 0.4026 0.3873
50 0.4026 0.4001 0.3993 0.3968
100 0.4026 0.4019 0.2810 0.2806
200 0.4026 0.4024 0.0973 0.0972
400 0.4026 0.4025 0.0293 0.0293
1000 0.4026 0.4026 0.0059 0.0059
RMS Maximum Stress
5 0.8009 0.1521 0.8009 0.1521
10 0.8009 0.4467 0.8009 0.4467
20 0.8009 0.6780 0.8008 0.6780
50 0.8009 0.7789 0.7951 0.7732
100 0.8009 0.7953 0.5923 0.5885
200 0.8009 0.7995 0.3284 0.3280
400 0.8009 0.8005 0.2788 0.2788
1000 0.8009 0.8008 0.2739 0.2739
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Table 3. Nondimensional Equivalent Linear Frequency (® a2/h)Vo/E, of a
Simply Supported Four-Layer Cross-P1§|l Square Plate at 136 dB Sound

Spectrum Level.

-:— Small Deflection Large Deflection
No Shear Shear No Shear Shear
5 18.891 11.554 18.891 11.554
10 18.891 15.662 18.891 15.662
20 18.891 17.872 18.900 17.872
50 18.891 18.715 19.047 18.870
100 18.891 18.846 27.063 26.995
200 18.891 18.880 78.196 | 78.146
400 18.891 18.888 259.463 259.396
1000 18.891 18.890 1287.297 1287.264
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Table 4. Nondimensional RMS Maximum Transverse Shear Stress
(RMS T z)h/10a \AG)) ?0) and (RMS Z)h/lOa Y (PSD) fo)
of a SYmp]y Supported Four-Layer Crosé-Ply Square Plate at 130 dB
Sound Spectrum Level.

a’h Small Deflection . Large Deflection

No Shear Shear No Shear Shear
RMS Max imum Tyz (Ty)
5 0.1906 0.0797 0.1906 0.0797
10 0.1906 0.1459 0.1906 0.1459
20 0.1906 0.1774 0.1906 0.1774
50 0.1906 0.1883 0.1890 0.1868
100 0.1906 0.1900 0.1330 0.1327
200 0.1906 0.1905 0.0461 0.0460
400 0.1906 0.1906 0.0139 0.0139
1000 0.1906 0.1906 0.0028 0.0028
RMS Maximum 7, (o)

5 0.4954 0.0966 0.4954 0.0966
10 0.4954 0.2786 0.4954 0.2786
20 0.4954 0.4203 0.4953 0.4203
50 0.4954 0.4819 0.4913 0.4779
100 0.4954 0.4919 0.3458 0.3434
200 0.4954 0.4945 0.1197 0.1195
400 0.4954 0.4951 0.0361 0.0361
1000 0.4954 0.4953 0.0073 0.0073
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Table 5. Nondimensional Fundamental Frequenc a2/h V /E2 of a Simpl
Supported n-Layer angle-ply (6=%45) squgre P até?o INe/E2 Pl
No Shear Shear

a/h  No. of Layers Ref. 42 Present Result Ref. 42 Present Result

5 3 25.82 25.82 12.78 12.21

10 3 25.82 25.82 19.38 18.89

10 5 25.82 25.82 19.23 19.06

10 7 25.82 25.82 19.19 19.12

20 3 25.82 25.82 23.62 23.40
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z/h

z/h

Fig. 6. Nondimensional RMS transverse shearing

stresses of a simply supported four—layer

cross—ply of a/h =10 at 130 dB sound
spectrum level.
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Fig. 7. RMS maximum deflection versus sound spectrum
level for a simply supported four—layer cross—
ply square plate with a/h = 200.
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spectrum level for a simply supported four—
layer cross—ply square plate with a/h = 200.

59



APPENDIX

The boundary conditions for clamped plate are

x=* a2 : w=a=8=0

b/2 : w=a=8=0

<
"
+

The deflection function which satisfy the boundary conditions on all four
edges is assumed as

w = aft)h (1 + cos EIfJ (1 + cos 2;y) (A2)

4 a

The stress function is of the following form

in which the particular solution is

21212
F o= - S_El;-[clo cos X + Cy; cos Y

P 32

<+

C11 cos X cos Y + C2o0 cos 2 X

+

Co2 cos 2 Y + C21 cos 2 X cos Y

<+

Cip cos X cos 2 Y + 5y, sin X sin ¥
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+ 521 sin 2 X sin Y

+ S12 sin X sin 2 Y] (A4)
where
x = 2% y=2Y b (AS)
a b

and the constants Cij and sij can be expressed in terms of the inverted

extensional laminate stiffness and length-to-width ratio, r, of the panel

as

Cio = 1/A*22
Co1 = 1/(r* A*11)

2 2
C11 = 26s/(Gs - Ge)
C20 = 1/(16 A%,,)
Coz '= 1/(16 A*y, r*)

2 2
Ci2 = 63/(63 - Gy)

2 2
C21 = 61/(6 - G2)
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S11

S12

S21

61

G2

G3

Gs

Ge

2 2
- 2G¢/(Gs - Gg)

2 2
- 6,/(63 - @)

2 2
- Gz/(Gl - Gz)

16 A*2 + 4(2A*12 + A%se)r2 + A*11 r

16 A*3g r + 4 A*¢ r3

M + 4 (2A%12 + A*g) r2 + 16 A*pp r"

4 A*pg r + 16 A*6 r3

Mraa + (2A%15 + A*gg) r2 + A%y

2A% 6 r + 2A*16 r3

Y4

(A6)

The complementary solution is of the same form as given by Eq. (49) with

& = 3h2n2

X

A22% - Al2%

32(Ay 1 *Ay2* A1 2*2) (

a2

62

(A7)




Ey - 3q2h?n? An* - Ap*
32(A) * Ay p*-Ap,*2) \ b2 a2

The modal amplitude equation is of the same form as that of Eq. (52) with

wg = {30y ()% + 2Dy, + 26g) ()2 (Z)2 + 30yp(L)*
m a a b b

- 4 [3Py(T)E * Py(T)* ()2 + P5(DT)2 (L)% + 3P,(1)6]}  (ns)
a a b a b b
and the modal mass m is given by
_ 9h2 4 ” ) 2 w2 Ty T2 Ty2 i
m=220 {1 - 21ak M + 2 kg (O () + dkg(D)4 - kg(I)2- kg(T (A9)
| ™ { 3 [ 1(3) 3 b (a) ) s(b) s(a) e(b) 1}

The nonlinearity coefficient is of the same form as given in Eq. (54) with

Y 2, my2 m 2 n,2
{Cio [1 - 8k (D) - 8k3(=) (F) - 16kg(T)* + 2kg(—) + 4kg(—) ]
a a b b a b
i1 4 L 2 ™ 2 w 4 n 2 ™ 2
+ Coy1-16ky (=) = 8k3(2) (=) = 8ks(2) + dkg(=) + 2kg(>) ]
a a b b a b

Y .2 n 2 n.2 7.2
+ C11[1’8k1(_—a-) - 8"5(;) (E) + 2"6(.;) + Zka(g) ]
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+(C20+Co2) [1-16 ky(D)* - 16k3(T)2(T)2 _ 16ks(T)" + Bkg(T)2 + dkg(T)?]
a a b a a b
+ %—C21[1‘15k1(29“ - 3k3(292(§92 - Bks(%J“ + 4k6(§J2 * ZkS(EJZ)]

+

N |-

C12[1-8k1(%J“- 8k3(%J2(%J2 - IGKS(Eﬂ“ + ZkG(EJZ + 4k8(%02)]

+ (521+512)[4k2(%)3(%9 + 4ku(£9(§J3 - k7(%)(%)]} (A10)

A = I {(A22*

App*r2) (1-4[4k,(T)%

| =

P RO+ (D) - ke(D)? -

kg(T)2])*(Arr*ri-Ayp*r2
3 3 (b) DM )

(1412 (D + Lk (DR2 + A - LoD - k(D7) (A1)

with transverse shear effects neglected, ie TS = 0. The coefficients ki’

Pi are zero, Egs. (A8)-(All) reduce to

u

w2 = 1607 13, + 2(Dy, + 206g) r2 + 3 Dyy ri (A12)
5 " ooha [3 01, 12 66) 22 T4]

2
n o= PN (A13)
16

\ = Th [Cio + Coy + Cyy + Cpp + C + 1 (Chy + Cy,) (A14)

P b 1 * Rz 2o T o Ul 12/]
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= mh [ A2* - 2A12* r2 + Apy* rt
Ae 8'+< A o (A15)
pa 117 R22™ - App* r

Equations (A12) - (Al5) are the same as in Ref. 3. The slope functions a
and g for the clamped case are assuned to be

B, a(t) sin 2™ (1 + cos 2™ (A16)
a

b

a (x,y,t)

B (x,y,t) = By q(t) (1 + cos 311) sin EEX (A17)
a

with
hr 1 2. 4 (ps- | ™2
> [1 + 4by, (a) 3 (bs- Dy2) (b) ]
Bl= (A18)
1 -4 [aky(™m* +2 ky(M2(M12 + 4 k(M - k(M2 - 1 k(M2
{ [ l(a) +3 3(a) (b) *3 S(b) ks(a) gka(b) 1}
BTt w4 ba™? - 4 (ba-by) (M)2
Zb[ F D) - 5 (bemba) (%)
B, = (A19)

-1k + e+ - Loy - k()

The Si of Eq. (80) are defined as

51 = Sl B,
a
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2
S, = Blsz (A20)

w
w
"

-2(Z 8, + 1 g,)
b a

The n, of Eq. (82) are defined as

2
n, = 1.(921) (45,5, sin X sin 2 Y + Sy, sin 2X sin Y + S, sin X sin ¥
83 b
+ 4C12 cos X cos 2 Y + C2y cos 2 Xcos Y + 4Cpz2 cos 2 Y
3h2y2 A22* Al2*
+ Cy; cos X cos Y + Cop cos Y) + - (A21)
32(A11*A22* - A1a*?) \ a° b2
_ 1  hrny2 . . . . . .
== (Z2) Sy, sin X sin 2 Y + 4S,; sin 2 X sin Y + S;, sin X sin ¥
8 a
+ Cy2 cosX cos2Y + 4 Cyy cos2X cos Y + 4 Cyg cos2X + Cyy cosX cosY
2.2 A11* A12*
+ Cyo COSX) + 3h°n - — - — (A22)
32(A11*A22*-A12*") \ b a
gy 53%_ (hrm)2(2S;, cos X cos 2 Y + 2S5, sin 2X cos Y
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+ 511 cos X cos Y + 203, sin X sin 2Y + Cp; sin 2X sin Y

+ C1 sin X sin Y) (A23)

The analagons equations for Egs. (94) - (97) are

Dlxz = 0.522 [(F;-F,) sin X cos Y + (F3-F,) cos X sin Y + Ejq sin X

+ E3p sin Y] (A24)
Dy, = - 2R Q1 * Ry Qup + (Ry#Ry) Q6 + Rs Qg + Rg Qgc) (A25)
D yz ° 0.5Z2[ (F5-Fg) sin X cos Y + (F;-Fg) cos X sin Y + Egy sin X
1

+ E7¢ sin Y] (A26)
D2yz = - 2[R Qug + (Ry + Rg) Qg * Ry Qg + Ry Qup * Rg Qz2] (A27)
where

Fi = ?—(Um S1 + T2 S)
2n  —

Fa = — (Qss S3)
b
2n

Fs = . (Qs S1 + Qg S2)
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